AZABICYCLO COMPOUNDS. XII.*
 4-SUBSTITUTED QUINUCLIDINES AS MODEL COMPOUNDS FOR THE STUDY OF POLAR EFFECTS TRANSFER

J.Paleček and J.Hlavatý
Department of Organic Chemistry, Institute of Chemical Technology, Prague 6 and J. Heyrovský Institute of Polarography, Czechoslovak Academy of Sciences, Prague I

Received April 24th, 1972

Constants $\mathrm{p} K_{\mathrm{a}}$ of 4 -substituted quinuclidines I in 5% ethanol-water (v/v), 50% ethanol-water (w / w), and 80% Methyl Cellosolve-water (w / w), as well as the rate constants of their reactions with methyl iodide in methanol were measured. The results were analysed using a Hammett type equation. Excellent correlations were obtained when σ_{I} constants were used. Reaction constants for ionisation reactions are almost independent of the medium. When F constants were applied a good correlation was obtained but appreciable deviations were observed in the case of some substituents. Further, the polar effect of the methyl group and the deuterium is discussed. The syntheses of several as yet underscribed 4 -substituted quinuclidines I are also described.

One of the most frequent approaches to the understanding of the effect of substituents on the reaction center is based on the utilization of the linear relationship of free energies, expressed by a Hammett-type equation ${ }^{1}$. In the case of saturated compounds two models are taken into consideration for the transfer of polar effects of the substituent: the transfer caused by subsequent polarisation of the σ-bonds (inductive effect), and direct electrostatic effect through space (field effect $)^{2,3}$. The questions of relative importance of both effects has been much studied. In some instances ${ }^{4-6}$ good agreement was found between experimental and calculated values by means of the Kirkwood-Westheimer theory and recently by means of the CNDO/ 2 method ${ }^{7}$ which proves the transfer through space (field effect). However, papers exist ${ }^{8-10}$ which demonstrate that the inductive effect is decisive. Ehrenson ${ }^{11}$, after adjusting the factors for the transfer of the polar effects via the bonds, came to the conclusion that both models predict similar results. From quantum chemical studies ${ }^{12,13}$ based on the EHT method it may be judged that the decisive effect on the ratio of single transfer types is due to the arrangement of orbitals in the direction of the transfer.

The effect of the transfer of unconjugative polar effects of the substituent on the reaction center was studied in a series of cyclic and bicyclic compounds with carboxyl groups ${ }^{4-7,14-18}$. Presently the most suitable models having a rigid structure without a steric interaction were 4 -substituted bicyclo[2,2,2]octanoic acids II, studied by Roberts and Moreland ${ }^{14}$ and later by other authors ${ }^{5,7,17,18}$. In this group of substances π-electrons of the carboxyl group also take part in the transfer of polar effects of substituents to the reaction center.

[^0]

II

$I a, \mathrm{X}=\mathrm{H}$,	$I g, \mathrm{X}=\mathrm{CH}_{2} \mathrm{OOCCH}_{3}$,	$I m, \mathrm{X}=\mathrm{OH}$,
$I b, \mathrm{X}=\mathrm{D}$,	$I n, \mathrm{X}=\mathrm{CH}_{2} \mathrm{Cl}$,	$I n, \mathrm{X}=\mathrm{OOCCH}$
3		

We found that 4-substituted quinuclidines I are suitable model substances for the study of the transfer of polar effects of the substituent ${ }^{19}$. The rigid structure of the quinuclidine nucleus causes the polar group oriented in the axis with the reaction center in the skeleton to be distant from it by approx. $2 \cdot 7 \AA$. The absence of π-electrons excludes the possible effect of the π-interaction considered in the case of carboxylic acids $I I$, and hence the transfer of the polar effects of substituents is affected only by σ-electrons. These facts are evident from the sensitivity of the reaction center on the changes of the substituent X. Substitution of hydrogen for a nitrile group causes an approximately 900 -fold increase of the dissociation constant.

The starting compound for the series of 4 -substituted quinuclidines I is cyano derivative ${ }^{20} I q$; the key intermediate for its synthesis is 1-methyl-4-cyanopiperidine (V). On the basis of our experience ${ }^{21}$ that on hydrogenation of methobromides of pyridine bases on Adams catalyst corresponding saturated derivatives are formed in almost quantitative yield we chose two pathways for the synthesis of nitrile $V_{:}$, in the first case methobromide III was hydrogenated on platinum oxide giving rise to 1-methyl-4-ethoxycarbonylpiperidine (IV) which was transformed to cyano derivative V. In the second 1-methyl-4-cyanopyridinium bromide ($V I$) was hydrogenated under the same conditions as above, and the crude product was column chromatographed affording a small amount of compound V.

Azeotropic esterification of the crude acid, prepared by alkaline hydrolysis ${ }^{20}$ of nitrile $I q$, gave 4-ethoxycarbonylquinuclidine $I l$. When the synthesis of amide $I k$

III

IV

V

VI
was carried out according to literature ${ }^{22}$ the pure product could be obtained only after chromatographic purification of the sublimated product on an alumina column. N, N-Dimethylcarbamoyl derivative $I j$ was prepared in two ways; in the first case ethyl ester $I l$ was heated with excess dimethylamine at $100-120^{\circ} \mathrm{C}$. However, even after prolonged reaction time we isolated from the reaction mixture chromatographically in addition to the required product $l j$ mainly unreacted compound $I l$. In the second the required derivative $I j$ was obtained after reaction of the hydrochloride of 4-quinuclidinecarboxylic acid chloride (prepared from the crude acid by reaction with thionyl chloride in the presence of dimethylformamide) with dimethylamine in chloroform.

Reduction of 4-ethoxycarbonylquinuclidine $I l$ with lithium aluminium hydride or deuteride gave 4-hydroxymethyl ${ }^{20}$ - (Ie) or 4-hydroxydeuteriomethylquinuclidine (If). 4-Chloromethylquinuclidine (Ih) obtained earlier in a low yield ${ }^{25}$ only in the form of picrate was prepared from hydroxy derivative Ie on reaction with thiony] chloride under catalysis with dimethylformamide. Only after repeated heating of alcohol $I e$ with approx. 75% hydrobromic acid we isolated bromide $I i$. On a single long-lasting heating to $150-160^{\circ} \mathrm{C}$ we isolated from the reaction product by column chromatography on alumina in addition to the required product $I i$ also the starting compound Ie. 4-Bromomethylquinuclidine (Ii) was reduced with zinc in acetic acid to the known 4-methyl derivative Ic. By an analogous reaction sequence we prepared from the 4-hydroxydideuteriomethyl derivative If the bromo derivative $I r$, and from it 4-trideuteriomethylquinuclidine (Id). Esterification of hydroxymethyl derivative $I e$ with acetic anhydride gave acetate $I g$. In this case too esterification had to be repeated at least twice in order to eliminate the starting compound $I e$ from the reaction product. The low reactivity of 4 -hydroxymethylquinuclidine ($I e$) in substitution reactions may be explained by the fact that it is a neopentyl type compound. 4-Acetoxyquinuclidine (In) was prepared on reaction of the known tosylate $I m$ with acetic anhydride ${ }^{23}$. After hydrogenolytic elimination of the benzyl group from the quaternary salt $I X$ prepared from aminodiol VII via dibromide VIII we isolated the known ${ }^{23}$ bromo derivative $I p$ of higher melting point. On increasing hydrogen chloride concentration and temperature during the reaction ${ }^{24}$, or when reacting with thionyl chloride in the presence of pyri-

$$
\begin{aligned}
V I I, \mathrm{X} & =\mathrm{OH} \\
V I I I, \mathrm{X} & =\mathrm{Br} \\
X, \mathrm{X} & =\mathrm{Cl}
\end{aligned}
$$

$I X, \mathrm{X}=\mathrm{Y}=\mathrm{Br}$
$X I, \mathrm{X}=\mathrm{Y}=\mathrm{Cl}$
dine we prepared hydrochloride X in high yield from substance VII. From this substance we prepared by the usual sequence $X \rightarrow X I \rightarrow I o$ chloro derivative Io.

Other 4 -substituted derivatives I were prepared by procedures described by Grob and coworkers ${ }^{20,22-25}$. Infrared and mass spectra of substances $I a-I q$ are in agreement with their structure. Methoiodides of 4 -substituted quinuclidines I were prepared from corresponding bases on reaction with methyl iodide in ether or ethanol solution; their physical and chemical constants are listed in Table I.

EXPERIMENTAL

Temperature data are not corrected. The melting points were determined on a Boetius block. Samples for analysis were dried over phosphorus pentoxide at 2-4 Torr for 10 h . For chromatography alumina of activity 1 I according to Brockmann was employed and for detection of thin-layer chromatograms iodine vapours were used. The infrared spectra were measured on a Perkin Elmer 325 apparatus, in chloroform. The mass spectra were recorded on a LKB 9000 apparatus (combined gas chromatograph-mass spectrometer) at 12 eV and 70 eV , ionising current 60 mA . The samples were introduced either directly or via the glc inlet. Quinuclidine (Ia) was prepared by combination of the described procedures ${ }^{26-29}$ in a total yield of 12.4%. The solvents and chemicals used were purified by the described procedures: methanol, ethanol and dimethylformamide ${ }^{33}$, Methyl Cellosolve ${ }^{34}$.

1-Methyl-4-ethoxycarbonylpyridinium Bromide (III)

To a methanolic solution of methyl bromide (1000 ml ; content 492 g , i.e. $5 \cdot 18 \mathrm{~mol}$ of methyl bromide) ethyl nicotinate ($381.0 \mathrm{~g} ; 2.52 \mathrm{~mol}$) was added in several portions under cooling with water and ice and stirring. After five days standing at room temperature the solvents were distilled off in vacuo and the product (the yield of which was almost quantitative) crystallized for analysis from ethanol-benzene mixture, m.p. $142-143^{\circ} \mathrm{C}$ (sealed capillary). For $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{BrNO}_{2}$ (246.1) calculated: $43.92 \% \mathrm{C}, 4.92 \% \mathrm{H}, 32 \cdot 47 \% \mathrm{Br}$; found: $44.05 \% \mathrm{C}, 5 \cdot 15 \% \mathrm{H}, 32.81 \% \mathrm{Br}$.

1-Methyl-4-ethoxycarbonylpiperidine (IV)

To methobromide $I I I(612 \mathrm{~g} ; 2.49 \mathrm{~mol})$ in 2000 ml of ethanol 3 g of platinum oxide were added and the mixture hydrogenated at 835 Torr and $25^{\circ} \mathrm{C}$. After 20 h 142 l of hydrogen were consumed (theoretical consumption is 1661), the catalyst was filtered off and ethanol evaporated in vacuo. Almost the theoretical amount of methobromide $I V$ was obtained, which (a 10 g portion) after crystallization from ethanol-ethyl acetate mixture melted at $131-132^{\circ} \mathrm{C}$. For $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{BrNO}_{2}$ ($252 \cdot 1$) calculated: $42 \cdot 86 \mathrm{H} \mathrm{C}, 7.20 \% \mathrm{H}, 31 \cdot 69 \% \mathrm{Br}, 5 \cdot 56 \% \mathrm{~N}$; found: $42.82 \% \mathrm{C}, 7.43 \% \mathrm{H}, 31 \cdot 51 \%$ $\mathrm{Br}, 5.50 \% \mathrm{~N}$. The crude methobromide $I V$ was dissolved in 150 ml of water, 300 ml of ether were added, the mixture alkalized with 40% sodium hydroxide solution to $\mathrm{pH} 12-14$ and the organic layer separated. The aqueous layer was then extracted four times with 400 ml of ether. The combined extracts were dried over a mixture of potassium carbonate and potassium hydroxide, the solvents evaporated, and the residue distilled, affording $322.5 \mathrm{~g}(75.8 \%)$ of product, b.p. 112 to $114^{\circ} \mathrm{C} / 35$ Torr. For $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{2}$ (171.2) calculated: $63 \cdot 13 \% \mathrm{C}, 10.01 \% \mathrm{H}, 8.18 \% \mathrm{~N}$; found: $63 \cdot 40 \% \mathrm{C}, 10.07 \% \mathrm{H}, 8.46 \% \mathrm{~N}$.

1-Methyl-4-cyanopyridinium Bromide ($V I$)

To a solution of 3.3 g (31.7 mmol) of 4 -cyanopyridine (prepared ${ }^{30}$ from ethyl isonicotinate) in 15 ml of methanol $6 \mathrm{~g}(63.2 \mathrm{mmol})$ of methyl bromide in 40 ml benzene were added. After 10 days standing at room temperature the separated crystals were filtered off under suction and

Table I
Methoiodides of 4-Substituted Quinuclidines I

Compound	M.p., ${ }^{\circ} \mathrm{C}$ solvent ${ }^{a}$	Formula(m.w.)	Calculated/Found			
			\% C	\% H	\% N	\% I
Id	275-276	$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{D}_{3} \mathrm{IN}$	39.95	$7.97{ }^{\text {b }}$	$5 \cdot 18$	46.90
CD_{3}	A	(270.6)	39.82	$7 \cdot 63^{\text {b }}$	$5 \cdot 27$	46.53
Ie	248-250 ${ }^{\text {c }}$	$\mathrm{C}_{9} \mathrm{H}_{18}{ }^{\text {INO }}$	38.17	6.41	4.95	44.82
$\mathrm{CH}_{2} \mathrm{OH}$	B	(283-2)	38.50	$6 \cdot 23$	$4 \cdot 82$	44.56
If	253-254	$\mathrm{C}_{9} \mathrm{H}_{16} \mathrm{D}_{2} \mathrm{INO}$	37.95	$7.07{ }^{\text {b }}$	4.91	44.50
$\mathrm{CD}_{2} \mathrm{OH}$	B	$(285 \cdot 2)$	37.83	$7.29{ }^{\text {b }}$	$4 \cdot 53$	44.78
Ig	154-156	$\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{INO}_{2}$	40.63	$6 \cdot 20$	-	39.02
$\mathrm{CH}_{2} \mathrm{OOCCH}_{3}$	B	$(325 \cdot 3)$	$40 \cdot 75$	6.34	-	38.85
Ih	151-153	$\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{ClIN}$	35.84	$5 \cdot 68$	4.64	42.08
$\mathrm{CH}_{2} \mathrm{Cl}$	C	(301.6)	$35 \cdot 67$	$5 \cdot 56$	$4 \cdot 75$	42.51
Ii	144-145	$\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{BrIN}$	31.23	$4 \cdot 95$	4.05	36.67
$\mathrm{CH}_{2} \mathrm{Br}$	C	(346-1)	31.80	$5 \cdot 21$	4.08	36.74
$1 j$	193-195	$\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{IN}_{2} \mathrm{O}$	$40 \cdot 75$	6.52	8.64	$39 \cdot 14$
$\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}$	A	(324.2)	- $40 \cdot 82$	6.75	8.97	38.79
Ik	305-306	$\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{IN}_{2} \mathrm{O}$	$36 \cdot 50$	5.79	9.46	$42 \cdot 85$
CONH_{2}	A	(296.2)	36.96	6.05	9.77	$42 \cdot 30$
Il	210-211	$\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{INO}_{2}$	40.63	$6 \cdot 20$	4.31	-
$\mathrm{COOC}_{2} \mathrm{H}_{5}$	A	(325-2)	$40 \cdot 93$	$6 \cdot 12$	$4 \cdot 25$	-
Im	329-331	$\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{INO}$	35.70	5.99	-	$47 \cdot 15$
OH	B	$(269 \cdot 1)$	35.88	$6 \cdot 16$	-	47.00
In	254-256	$\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{INO}_{2}$	38.59	5.83	$4 \cdot 50$	$40 \cdot 78$
OOCCH_{3}	C	(311-2)	$38 \cdot 34$	$6 \cdot 25$	$4 \cdot 19$	$40 \cdot 11$
Io	256-258	$\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{ClIN}$	33.41	$5 \cdot 26$	4.87	$44 \cdot 13$
Cl	A	(287.6)	33.96	$5 \cdot 55$	$4 \cdot 87$	$44 \cdot 25$
Ip	290-291	$\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{BrIN}$	28.92	$4 \cdot 55$	$4 \cdot 22$	38.22
Br	C	(332.0)	29.06	$4 \cdot 77$	$4 \cdot 14$	38.45
\underline{q}	$331-332^{\text {d }}$	$\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{IN}_{2}$	38.86	5.44	10.07	$45 \cdot 63$
CN	A	(278.1)	38.54	$5 \cdot 32$	$10 \cdot 21$	$45 \cdot 78$

${ }^{a}$ A ethanol, B ethanol-light petroleum, C ethanol-ether; ${ }^{b}$ the value corresponds to the sum $\mathrm{H}+\mathrm{D} ;{ }^{c}$ lit. ${ }^{25}$ gives $247-248^{\circ} \mathrm{C}$, without analysis; ${ }^{d}{ }^{\text {lit. }}{ }^{20}$ says that it does not melt up to $310^{\circ} \mathrm{C}$, without analysis.
the mother liquors concentrated, affording another crop of crystals. Crystallisation from metha-nol-benzene ($1: 2$) gave $6.1 \mathrm{~g}\left(96 \cdot 7 \%\right.$) of product, m.p. $234-235^{\circ} \mathrm{C}$. For $\mathrm{C}_{7} \mathrm{H}_{7} \mathrm{BrN}_{2}$ (199.1) calculated: $42.24 \% \mathrm{C}, 3.54 \% \mathrm{H}, 40 \cdot 15 \% \mathrm{Br}, 14.07 \% \mathrm{~N}$; found: $42 \cdot 35 \% \mathrm{C}, 3.72 \% \mathrm{H}, 40 \cdot 25 \% \mathrm{Br}$, $13.84 \% \mathrm{~N}$.

1-Methyl-4-cyanopiperidine (V)

To methobromide VI (5.65 g) in 20 ml methanol Adams catalyst (130 mg) was added and the mixture hydrogenated at room temperature and 845 Torr pressure until 1900 ml of hydrogen were consumed (theoretical amount for three double bonds is 1810 ml). The catalyst was filtered off and the solvents evaporated. Distillation residue (5.4 g) was chromatographed on alumina, affording 0.7 g of product, b.p. $84-87^{\circ} \mathrm{C} / 12$ Torr (Hickmann flask). Literature ${ }^{31}$ gives b.p. $84-86^{\circ} \mathrm{C} / 11$ Torr.

4-Ethoxycarbonylquinuclidine (Il)

A mixture of $8.0 \mathrm{~g}(58.8 \mathrm{mmol})$ of nitrile $I q\left(r e f{ }^{20}\right)$ and 124 ml of 5% sodium hydroxide was heated at $140-160^{\circ} \mathrm{C}$ for 18 h and then evaporated in vacuo. The residue was triturated with 20 ml of ethanol and 50 ml of benzene, evaporated and esterified azeotropically with a mixture of 80 ml ethanol, 200 ml benzene, and 14 ml conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. After 10 h boiling the aqueous phase stopped separating and the solvents were evaporated. The oily residue was dissolved in 20 ml of ice-cold water, additioned with 30 ml of ether, and alkalized under external cooling with ice and water with a saturated potassium carbonate solution. The organic phase was separated and the aqueous extracted four times with 50 ml portions of ether. The combined extracts were dried over potassium carbonate and evaporated, leaving $8.47 \mathrm{~g}(81.4 \%)$ of product, b.p. $120-121^{\circ} \mathrm{C} /$ 13 Torr. For $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2}$ (183.2) calculated: $65 \cdot 54 \% \mathrm{C}, 9.35 \% \mathrm{H}, 7.64 \% \mathrm{~N}$; found: $65.32 \% \mathrm{C}$, $9.40 \% \mathrm{H}, 7.81 \% \mathrm{~N}$.

4-Hydroxydideuteriomethylquinuclidine (If)

To a suspension of 512 mg of lithium aluminium deuteride in 20 ml of ether 1.82 g of ester $I I$ in 10 ml of ether were added and the reaction mixture boiled for 5 h . After decomposition with 2 ml of a 4% sodium hydroxide solution and working up in the standard manner the product was sublimated (bath temperature $120-130^{\circ} \mathrm{C}$) at 14 Torr, affording 1.24 g of substance, m.p. $139-140^{\circ} \mathrm{C}$. For $\mathrm{C}_{8} \mathrm{H}_{13} \mathrm{D}_{2} \mathrm{NO}$ (143.2) calculated: $67.09 \% \mathrm{C}, 11.96 \% \mathrm{H}+\mathrm{D}, 9.78 \% \mathrm{~N}$; found: $67.27 \% \mathrm{C}, 11.92 \% \mathrm{H}+\mathrm{D}, 9.95 \% \mathrm{~N}$.

4-Acetoxymethylquinuclidine (Ig)

A mixture of $848 \mathrm{mg}(6 \mathrm{mmol})$ of hydroxy derivative ${ }^{20}$ Ie and $5 \cdot 1 \mathrm{ml}(5.5 \mathrm{~g} ; 54 \mathrm{mmol})$ of acetic anhydride was refluxed for 10 h and evaporated in vacuo to dryness. After addition of the same amount of acetic anhydride the procedure was repeated. The distillation residue was dissolved in 3 ml of ice water, 5 ml of ether were added and the mixture alkalized with a saturated potassium carbonate solution to $\mathrm{pH} 12-13$. After the usual working up 650 mg of product were obtained $\left(59 \cdot 1 \%\right.$), b.p. $70-72^{\circ} \mathrm{C} / 1$ Torr (Hickmann flask, bath temperature $110-120^{\circ} \mathrm{C}$), m.p. $32-35^{\circ} \mathrm{C}$. For $\mathrm{C}_{10} \mathrm{H}_{17} \mathrm{NO}_{2}$ (183.2) calculated: $65.54 \% \mathrm{C}, 9.35 \% \mathrm{H}, 7.64 \% \mathrm{~N}$; found: $65.65 \% \mathrm{C}, 9.40 \% \mathrm{H}$, 7.86% N.

4-Bromomethylquinuclidine (II)
A mixture of $1.5 \mathrm{~g}(10.6 \mathrm{mmol})$ of substance $I e$ and 35 ml of approx. 75% hydrobromic acid was heated at $120-130^{\circ} \mathrm{C}$ in a pressure tube for 6 h . After distilling off the hydrobromic acid in vacuo the operation was repeated with the same amount of acid and the distillation residue was crystallised twice from ethanol-ethyl acetate (charcoal) affording $2.48 \mathrm{~g}(82.1 \%)$ of hydrobromide $I i$, m.p. $260-261^{\circ} \mathrm{C}$. For $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{Br}_{2} \mathrm{~N}$ (285.0) calculated: $33.71 \% \mathrm{C}, 5.30 \% \mathrm{H}, 4.91 \% \mathrm{~N}, 56.07 \% \mathrm{Br}$; found: $34.01 \% \mathrm{C}, 5.59 \% \mathrm{H}, 4.83 \% \mathrm{~N}, 56.25 \% \mathrm{Br}$. A part of hydrobromide $I i(2.0 \mathrm{~g}, 7 \mathrm{mmol})$ was dissolved in 5 ml of water, 10 ml of ether were added, and the base liberated with saturated potassium carbonate solution. After the conventional working up $1.15 \mathrm{~g}(80.0 \%)$ of product was obtained, b.p. $65-68^{\circ} \mathrm{C} / 1 \mathrm{Torr}$ (Hickmann flask, bath temperature $100-110^{\circ} \mathrm{C}$). For $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{BrN}$ (204.1) calculated: $47.07 \% \mathrm{C}, 6.91 \% \mathrm{H}, 6.86 \% \mathrm{~N}, 39 \cdot 15 \% \mathrm{Br}$; found: $46.84 \% \mathrm{C}, 7 \cdot 14 \% \mathrm{H}, 6.58 \% \mathrm{~N}$, 39.99% Br.

4-Bromodideuteriomethylquinuclidine (Ir)

Taking 620 mg of alcohol If and applying the same working up as in the case of 4-bromomethyl derivative $1 i, 727 \mathrm{mg}(81.6 \%)$ of product of b.p. $66-68^{\circ} \mathrm{C} / 2$ Torr (Hickmann flask, bath temperature $80-90^{\circ} \mathrm{C}$) were obtained. For $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{D}_{2} \mathrm{BrN}(206 \cdot 1)$ calculated: $46.61 \% \mathrm{C}, 7.83 \% \mathrm{H}+\mathrm{D}$, $38.77 \% \mathrm{Br}, 6 \cdot 08 \% \mathrm{~N}$; found: $46 \cdot 32 \% \mathrm{C}, 7.51 \% \mathrm{H}+\mathrm{D}, 39 \cdot 05 \% \mathrm{Br}, 6.54 \% \mathrm{~N}$.

4-Methylquinuclidine (Ic)

Crude hydrobromide of bromo derivative $I i(2.39 \mathrm{~g})$ prepared from $1.1 \mathrm{~g}(7.8 \mathrm{mmol})$ of hydroxy derivative $I e$ was dissolved in 20 ml of glacial acetic acid and zinc dust added to it (7 g in four portions, over 20 min) under stirring and refluxing for 5 h . After cooling and alkalization with 40% sodium hydroxide solution the bases were steam-distilled and the distillate neutralized with dilute hydrochloric acid and evaporated in vacuo. The base set free from the crude hydrochloride was extracted with ether (50 ml) and worked up in the usual manner, affording 670 mg of substance (68.8% calculated per starting hydroxy derivative 1 e), b.p. $154-156^{\circ} \mathrm{C}$ (Hickmann flask, bath temperature $170-175^{\circ} \mathrm{C}$). Literature ${ }^{32}$ gives $158-160^{\circ} \mathrm{C} / 738$ Torr.

Picrate: m.p. $295-296^{\circ} \mathrm{C}$ (ethanol). Literature ${ }^{20,32}$ gives $292-294^{\circ} \mathrm{C}$ and $291^{\circ} \mathrm{C}$ (ethanol).

4-Trideuteriomethylquinuclidine (Id)

To 654 mg of bromo derivative $I r$ in O-deuterioacetic acid (prepared from 10 ml of acetic anhydride and 2.1 ml of deuterium oxide) 3.5 g of zinc dust (freed from occluded water) were added in three portions and the mixture refluxed for 4 h . After the conventional working up of the reaction mixture $272 \mathrm{mg}\left(62.5 \%\right.$) of product were obtained, b.p. $156-158^{\circ} \mathrm{C} / 746$ Torr (Hickmann flask, bath temp. $165-175^{\circ} \mathrm{C}$), m.p. $48-50^{\circ} \mathrm{C}$ (sealed capillary). For $\mathrm{C}_{8} \mathrm{H}_{12} \mathrm{D}_{3} \mathrm{~N}(128 \cdot 2)$ calculated: $74.93 \% \mathrm{C}, 14 \cdot 14 \% \mathrm{H}+\mathrm{D}, 10.92 \% \mathrm{~N}$; found: $74 \cdot 57 \% \mathrm{C}, 13 \cdot 93 \% \mathrm{H}+\mathrm{D}, 10 \cdot 88 \% \mathrm{~N}$.

Picrate: m.p. $304-305^{\circ} \mathrm{C}$ (ethanol-water). For $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{D}_{3} \mathrm{~N}_{4} \mathrm{O}_{7}(357.3)$ calculated: $47.06 \% \mathrm{C}$, $5.92 \% \mathrm{H}+\mathrm{D}, 15 \cdot 68 \% \mathrm{~N}$; found: $46.91 \% \mathrm{C}, 5.83 \% \mathrm{H}+\mathrm{D}, 15 \cdot 79 \% \mathrm{~N}$.

4-Chloromethylquinuclidine (Ih)

To $800 \mathrm{mg}(5.67 \mathrm{mmol})$ of hydroxymethyl derivative $I e$ in 2 ml of ethanol 3 ml of 6 M ethanolic hydrogen chloride solution were added, the mixture was allowed to stand for 10 min and then ethanol was evaporated to dryness. To hydrochloride $I e 0.3 \mathrm{ml}$ of dimethylformamide and 10 ml
thionyl chloride were added and the mixture was heated for 4 h . After standing at room temperature overnight excess thionyl chloride was distilled off in vacuo. The crude product was dissolved in 7 ml of water, alkalized with potassium carbonate and worked up in the usual manner, affording $600 \mathrm{mg}\left(66.2 \%\right.$) of product, b.p. $93-95^{\circ} \mathrm{C} / 12$ Torr. For $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{CIN}$ (159.7) calculated: $60.18 \% \mathrm{C}, 8.84 \% \mathrm{H}, 8.77 \% \mathrm{~N}, 22.21 \% \mathrm{Cl}$; found: $60.46 \% \mathrm{C}, 8.91 \% \mathrm{H}, 8.62 \% \mathrm{~N}, 22.31 \% \mathrm{Cl}$.

Picrate: m.p. $246-248^{\circ} \mathrm{C}$ (methanol). Literature ${ }^{25}$ gave $244-246^{\circ} \mathrm{C}$.

4-Carbamoylquinuclidine (Ik)

It was prepared from $1 \cdot 0 \mathrm{~g}$ of nitrile $I e$ according to literature ${ }^{22}$. The obtained product (830 mg) melted at $229-235^{\circ} \mathrm{C}$ (literature ${ }^{22}$ gives $222-224^{\circ} \mathrm{C}$). On chromatography on alumina (120 g , act. III, 4% ethanol in chloroform as eluant) 710 mg of product were obtained which was sublimated (bath temperature $160-170^{\circ} \mathrm{C}$ at $1-1.5 \mathrm{Torr}$), m.p. $236-237^{\circ} \mathrm{C}$ (sealed capillary). For $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}(154 \cdot 2)$ calculated: $62 \cdot 30 \% \mathrm{C}, 9 \cdot 15 \% \mathrm{H} .18 \cdot 17 \% \mathrm{~N}$; found: $62 \cdot 59 \% \mathrm{C}, 9.47 \% \mathrm{H}$, $18.31 \% \mathrm{~N}$.

4-(N,N-Dimethylcarbamoyl)quinuclidine ($I j$)

Hydrochloride of 4-quinuclidinecarboxylic acid, prepared from 0.7 g of cyano derivative $I q$, was refluxed with 0.6 ml of dimethylformamide and 16 ml of thionyl chloride for 3 h . Excess thionyl chloride was distilled off in a vacuum and the distillation residue dissolved in 25 ml of chloroform (freed from stabilizer). The solution was externally cooled with ice and water and additioned over 10 min under stirring with $1.51 \mathrm{ml}(1.03 \mathrm{~g})$ of dimethylamine dissolved in 5 ml of the same solvent. After one hour stirring at this temperature the reaction mixture was slowly heated to $20-25^{\circ} \mathrm{C}$ and stirred for another 3 hours. It was then washed with 5 ml of 20% sodium hydroxide and the chloroform solution dried over potassium carbonate and evaporated. The crude product (720 mg) was chromatographed on a column of alumina (70 g , column height $35 \mathrm{~cm}, 4 \%$ ethanol in chloroform as eluent). The product ($515 \mathrm{mg} ; 54.9 \%$) was sublimated (bath temperature $140-150^{\circ} \mathrm{C} / 12 \mathrm{Torr}$), m.p. $91-92^{\circ} \mathrm{C}$ (sealed capillary). For $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}$ (182.3) calculated: $65 \cdot 89 \% \mathrm{C}, 9.96 \% \mathrm{H}, 15 \cdot 37 \% \mathrm{~N}$; found: $65.45 \% \mathrm{C}, 9.97 \% \mathrm{H}, 15 \cdot 41 \% \mathrm{~N}$.

Picrate: m.p. $249-251^{\circ} \mathrm{C}$ (ethanol). For $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{8}$ (411.4) calculated: $46.72 \% \mathrm{C}, 5.15 \% \mathrm{H}$, $17.03 \% \mathrm{~N}$; found: $46.58 \% \mathrm{C}, 5.38 \% \mathrm{H}, 17.52 \% \mathrm{~N}$.

4-Acetoxyquinuclidine (In)

From a mixture of 1947 mg of tosylate $I m$ (prepared according to literature ${ }^{23}$) and 16 ml of acetic anhydride excess anhydride was distilled off in vacuo after 7 h refluxing. Fresh acetic anhydride (16 ml) was added to the distillation residue and the operation repeated. The distillation residue was dissolved in 10 ml of water, the same amount of ether was added and the mixture alkalized with saturated potassium carbonate solution. The ethereal layer was separated and the aqueous layer extracted five times with 20 ml of the same solvent. After the conventional work-up the product was sublimated (bath temperature $110-120^{\circ} \mathrm{C} / 10 \mathrm{Torr}$) affording 750 mg of product, m.p. $77-79^{\circ} \mathrm{C}$ (sealed capillary). For $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{2}$ (169.2) calculated: $63.88 \% \mathrm{C}, 8.93 \% \mathrm{H}$, $8 \cdot 28 \% \mathrm{~N}$; found: $64 \cdot 12 \% \mathrm{C}, 9 \cdot 18 \% \mathrm{H}, 8 \cdot 20 \% \mathrm{~N}$.

Hydrobromide of 1-Benzyl-4-bromo-4-(2-bromoethyl)piperidine (VIII)
A mixture of $10 \mathrm{~g}(42.5 \mathrm{mmol})$ of aminodiol $V I I$ and 150 ml of approx. 75% hydrobromic acid was heated in a pressure tube at $90-100^{\circ} \mathrm{C}$ for 8 hours. The reaction mixture was diluted with
water, filtered with charcoal, and concentrated to a small volume. After cooling the separated crystals were filtered off under suction and crystallized from water, affording 17.7 g (94.2%) of hydrobromide $V I I I$, m.p. $162-163^{\circ} \mathrm{C}$. Literature ${ }^{23}$ gives an identical melting point.

4-Bromoquinuclidine ($I p$)

From 17.7 g of hydrobromide VIII $8.0 \mathrm{~g}(56.2 \%)$ of hydrobromide $I p$ were prepared in the described manner ${ }^{23}$. From 1 g of this product $630 \mathrm{mg}(90.9 \%)$ of base were liberated which melted after sublimation ($90-95^{\circ} \mathrm{C}$ bath temperature) at $105-107^{\circ} \mathrm{C}$ (sealed capillary). Literature ${ }^{23}$ gives $89--89 \cdot 5^{\circ} \mathrm{C}$. For $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{BrN}$ (190.1) calculated: $44 \cdot 23 \% \mathrm{C}, 6.36 \% \mathrm{H}, 7 \cdot 37 \% \mathrm{~N}$, $42.04 \% \mathrm{Br}$; found: $44 \cdot 51 \% \mathrm{C}, 6 \cdot 28 \% \mathrm{H}, 7 \cdot 11 \% \mathrm{~N}, 42 \cdot 37 \% \mathrm{Br}$.

Hydrochloride of 1-Benzyl-4-chloro-4-(2-chloroethyl)piperidine (X)

A) 4 g (17 mmol) of aminodiol VII were dissolved in 100 ml of chloroform and the solution saturated with gaseous hydrogen chloride at -60 to $-50^{\circ} \mathrm{C}$. After 16 h heating of this mixture in a pressure tube (bath temperature $120-130^{\circ} \mathrm{C}$) the solvents were evaporated and the residue crystallised from water (charcoal). Yield $4.5 \mathrm{~g}\left(85.8 \%\right.$) of product, m.p. $177-179^{\circ} \mathrm{C}$. Literature ${ }^{24}$ gives $168-172^{\circ} \mathrm{C}$. For $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{Cl}_{3} \mathrm{~N}(308.7)$ calculated: $54 \cdot 47 \% \mathrm{C}, 6 \cdot 53 \% \mathrm{H}, 34 \cdot 46 \% \mathrm{Cl}, 4.54 \% \mathrm{~N}$; found: $54.48 \% \mathrm{C}, 6 \cdot 37 \% \mathrm{H}, 34 \cdot 69 \% \mathrm{Cl}, 4 \cdot 88 \% \mathrm{~N}$.
B) To a mixture of hydrochloride of aminodiol VII (prepared from 1.59 g of aminodiol VII), 0.25 ml of pyridine, and 15 ml of chloroform 2.41 g of thionyl chloride in 10 ml of chloroform were added under stirring and cooling, over 15 min . After 30 min stirring and cooling and 7 hours refluxing the mixture was evaporated in a vacuum. Crystallisation of the residue from water (charcoal) gave $1.7 \mathrm{~g}(82.1 \%)$ of product, m.p. $175-177^{\circ} \mathrm{C}$.

4-Chloroquinuclidine (Io)

From 3.6 g (11.6 mmol) of hydrochloride $X 1.54 \mathrm{~g}(88.5 \%)$ of hydrochloride 10 was obtained in a similar manner ${ }^{24}$. From this substance the base was liberated which was extracted with ether. The extract was dried shortly over potassium carbonate and the solvents evaporated. The residue at $120-130^{\circ} \mathrm{C}$ (bath temperature) was sublimated to give $1.07 \mathrm{~g}(87.0 \%)$ of product melting at $102-104^{\circ} \mathrm{C}$ (sealed capillary). For $\mathrm{C}_{7} \mathrm{H}_{12} \mathrm{CIN}$ (145.6) calculated: $57.72 \% \mathrm{C}, 8.31 \% \mathrm{H}$, $24.35 \% \mathrm{Cl}, 9 \cdot 62 \% \mathrm{~N}$; found: $57.93 \% \mathrm{C}, 8.44 \% \mathrm{H}, 23.88 \% \mathrm{Cl}, 9.75 \% \mathrm{~N}$.

Picrate: m.p. $248-249^{\circ} \mathrm{C}$ (ethanol). For $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{CIN}_{4} \mathrm{O}_{7}$ (374.7) calculated: $41.67 \% \mathrm{C}$, $4.03 \% \mathrm{H}, 9.46 \% \mathrm{Cl}, 14.95 \% \mathrm{~N}$; found: $42 \cdot 01 \% \mathrm{C}, 4 \cdot 14 \% \mathrm{H}, 9 \cdot 39 \% \mathrm{Cl}, 15 \cdot 19 \% \mathrm{~N}$.

Measurement of Dissociation Constants

The $\mathrm{p} K_{\mathrm{a}}$ values were measured in 5% aqueous ethanol (v / v), 50% ethanol (w / w), and 80% Methyl Cellosolve-water (w/w) at $25 \pm 0 \cdot 1^{\circ} \mathrm{C}$ on Potentiograph AG Herisau (Switzerland). The measurements were carried out using a glass electrode EA 109 X and a saturated calomel electrode EA 404. In view of the fact that the titration was carried out in 0.1 m perchloric acid the saturated potassium chloride solution in the calomel electrode was substituted by a saturated sodium chloride solution. The pH -meter used was calibrated before each measurement and after it, using an aqueous solution of potassium hydrogen phthalate (pH 4.01 at $25^{\circ} \mathrm{C}$). The given $\mathrm{p} K_{\mathrm{a}}$ values represent the averages of at least two measurements which did not differ for more than ± 0.03 units. In all instances fresh solutions were prepared (approximate concentration 0.01 to 0.015 M)
and the titration carried out in thermostated vessels under nitrogen with 0.1 m perchloric acid in corresponding solvent.

Measurement of Rate Constants

A 0.01 m solution of quinuclidine derivative was prepared at $25 \pm 0.1^{\circ} \mathrm{C}$ containing a 10 -fold amount of methyl iodide in methanol. Aliquot samples (2 ml) were withdrawn from the solution at definite time intervals (the time of addition of methyl iodide represented the zero point) and added to a mixture of 4 ml of dimethylformamide and 4 ml of acetate buffer of $\mathrm{pH} 4 \cdot 7$. The content of iodide anions was determined polarographically on a LP 60 apparatus connected with an EZ 2 recorder, making use of thermostated Kalousek vessel with separate saturated mercury-(I)sulfate electrode. The reaction course was followed up to at least 50% reaction of the corresponding quinuclidine derivative. When the rate constants of 4 -substituted quinuclidines I were measured calibration was always carried out with methoiodide under the same conditions. The results were worked up by the described procedure ${ }^{35}$.

Competitive Reactions

To a mixture of quinuclidine ($1 a$) and 4-deuterioquinuclidine ($1 b$) ($0.90 \mathrm{mmol}, 1: 1 \mathrm{ratio}$) in 1 ml of ether a solution of methyl iodide (0.45 mmol) in 0.1 ml of ether was added. After half-an-hour standing at $25 \pm 1^{\circ} \mathrm{C}$ the precipitated salts were separated by filtration under suction. The relative ratio of substances $I a$ and $I b$ in the starting and after reaction mixture (mother liquors) was determined from the relative heights of the molecular ionic species $m / e 111$ and $m / e 112$, measured twice. In the initial mixture of substances $I a$ and $I b$ the relative ratio of the mentioned ionic species was 1.63 and after reaction it was $1 \cdot 64$. Analogously the reaction was carried out with a mixture of 4-methyl-(Ic) and 4-trideuteriomethylquinuclidine (Id). The determined relative ratio of molecular ionic species $m / e 125$ and $m / e 128$ was 1.33 before the reaction and 1.29 after it.

DISCUSSION

The effect of the substituent X in quinuclidine derivatives I was determined in the case of protonation on one hand, and in the case of quaternization on the other, by reaction with methyl iodide. In the first case dissociation constants of the bases in three solvent systems were measured: 5% of ethanol in water (v / v), 50% of ethanol in water (w / w), and 80% of Methyl Cellosolve in water $(\mathrm{w} / \mathrm{w})$ at $25^{\circ} \mathrm{C}$. Due to the limited solubility of some derivatives water could not be used for the measurement of the dissociation constants and therefore we chose 5% ethanolic solution. The dissociation constants measured in this solvent did not practically differ from those determined in water. For quinuclidine ($I a$) and bromo derivative $I p$ we determined $p K_{\mathrm{a}}$ values 11.0 and 8.46 which is in good agreement with the values determined in water: 10.95 (ref. ${ }^{36}$) and 8.60 ± 0.1 (ref. ${ }^{37}$). In the second case the rate constants of the reaction of 4 -substituted quinuclidines (I) with methyl iodide in methanol at $25^{\circ} \mathrm{C}$ were measured polarographically by the method described by Sicher and coworkers ${ }^{35}$. Experimental results are listed in Table II.

From Table II it is evident that the changes of the substituent X have a substantial effect on the reactivity of the compounds studied. The effect of the substituent X on the changes of the $\mathrm{p} K_{\mathrm{a}}$ values is parallel with the effect observed in substituted acetic acids (Fig. 1) and 4-substituted bicyclo[2,2,2]octanoic acids (II). As is evident from Fig. 3 and Table III our model is also justified by the correlation of the measured

Table II
Experimental Values of $\mathrm{p} K_{\mathrm{a}}$ and $\log \left(K / K_{\mathrm{H}}\right)$ of 4-Substituted Quinuclidines I in various solvents, Rate Constants and $\log \left(k / k_{\mathrm{H}}\right)$ of the Reaction with Methyl Iodide in Methanol at $25^{\circ} \mathrm{C}$, and the σ_{I}-Constants Used

Compound X	$\sigma_{\text {I }}$	$\begin{gathered} \mathrm{A}^{a} \mathrm{p} K_{\mathrm{a}} \\ \left(\log \left(K / K_{\mathrm{H}}\right)\right) \end{gathered}$	$\begin{gathered} \mathrm{B}^{a} \mathrm{p} K_{\mathrm{a}} \\ \left.\left(\log K / K_{H}\right)\right) \end{gathered}$	$\begin{gathered} \mathrm{C}^{a} \mathrm{p} K_{\mathrm{a}} \\ \left(\log \left(K / K_{\mathrm{H}}\right)\right) \end{gathered}$	$\begin{gathered} k \cdot 10^{3} 1 / \mathrm{mol} \mathrm{~s} \\ \left(\log \left(k / k_{\mathrm{H}}\right)\right) \end{gathered}$
Ia	0.00^{+}	11.00	9.98	8.88	$10.35^{\text {b }}$
H		(0.00)	(0.00)	(0.00)	(0.000)
Ib	$0 \cdot 004$	10.98	9.91	-	10.35
D		(0.02)	(0.07)	-	(0.000)
Ic	0.014	10.92	9.77	-	10.00
CH_{3}		(0.08)	(0.21)	-	(-0.015)
Id	0.02	10.89	9.70)	-	-
CD_{3}		(0;11)	(0.28)	-	-
Ie	0.05^{+}	10.42	9.57	8.83	7.56
$\mathrm{CH}_{2} \mathrm{OH}$		(0.58)	(0.41)	(0.05)	(-0.136)
lf	$0 \cdot 10$	10.43	9.52	-	-
$\mathrm{CD}_{2} \mathrm{OH}$		(0.57)	(0.46)	-	-
$1 g$	0.16	10.10	8.94	-	6.80
$\mathrm{CH}_{2} \mathrm{OOCCH}_{3}$		(0.90)	(1.04)	-	(-0.183)
Ih	0.16	10.08	8.84	-	-
$\mathrm{CH}_{2} \mathrm{Cl}$		(0.92)	(1-14)	-	-
$1 i$	$0.18{ }^{+}$	10.00	8.75	8.08	6.55
$\mathrm{CH}_{2} \mathrm{Br}$		(1.00)	(1-23)	(0.80)	(-0.199)
$1 j$	0.28	$9 \cdot 51$	$8 \cdot 61$	-	7.00
$\mathrm{CON}\left(\mathrm{CH}_{3}\right)_{2}$		(1-49)	(1.37)	-	(-0.170)
Ik	0.28	$9 \cdot 40$	$8 \cdot 46$	-	6.85
CONH_{2}		(1.60)	(1.52)	-	(-0.179)
Il	0.32^{+}	9.47	8.27	7.55	$5 \cdot 17$
$\mathrm{COOC}_{2} \mathrm{H}_{5}$		(1.53)	(1.71)	(1.33)	(-0.302)
Im	$0.25{ }^{+}$	9.35	$8 \cdot 65$	8.05	6.80
OH		(1.65)	(1.33)	(0.83)	(-0.183)
In	0.37	8.95	7.82	-	4.93
OOCCH_{3}		(2.05)	(2.16)	-	(-0.322)
Io	$0.47{ }^{+}$	8.57	$7 \cdot 49$	-	3.70
Cl		(2.43)	(2.49)	-	(-0.477)
$\mathrm{Br}^{I p}$	$0.45{ }^{+}$	8.46	7.37	6.73	3.67
		(2.54)	(2.61)	(2.11)	(-0.450)
$\mathrm{CN}{ }^{l q}$	$0.59{ }^{+}$	8.05	7.02	6.46	2.73
		(2.95)	(2.96)	(2.42)	(-0.579)

[^1]dissociation constants and reaction rates. Our data permit the computation of the constants σ_{1} of the inductive effect independently of the earlier experiments. However, in order to preserve the scale of the accepted σ_{I} constants, we calculated ϱ_{I} for formula ${ }^{39,40} \log \left(K / K_{\mathrm{H}}\right)=\varrho_{\mathrm{I}} \sigma_{1}$ as the corresponding normalizing factor ${ }^{38}$. For this we used 8 substituents (in Table II indicated by +) the constants σ_{1} of which are considered reliable. Using the value of the reaction constant $\varrho_{\mathrm{I}}=4.85$ ($r=$ $=0.9858, s=0.1859$) we calculated σ_{I} based on our dissociation constants measurements in $5 \mathrm{vol} . \%$ of ethanol in water (Table II) even for substituents marked with a cross. In view of the high ϱ_{I} value these σ_{I} values may be more precise than the earlier ones, but in principle they agree, as is also shown by the correlations with the substituted acetic acids (Fig. 1) and derivatives of bicyclooctane II (Fig. 2). Eventually we calculated the reaction constants ϱ_{I} for all our measurements (Table III) on the basis of our values for σ_{I} constants. From Table III and Fig. 4 it is evident that the quality of the correlations confirms the reliability of σ_{1} constants when used as the measure of the polar effects of substituents on the reaction center.

Among the σ_{I} values found three cases deserve more detailed discussion. For the methyl group we calculated the value of the σ_{I} constant, 0.014 , which differs from the commonly given value -0.05^{40} and -0.08^{9}. Much attention was paid recently to the electronic effect of the methyl group ${ }^{41}$. The view that the alkyl groups are donors of electrons when compared with hydrogen found much support ${ }^{41-43}$. However, it appears that this is valid only for alkyl groups bound to $s p$ and $s p^{2}$ hybridized carbon atoms. The finding that the methyl group retards the addition of 2,4 -dinitrobenzenesulfenyl chlorides to cyclohexene ${ }^{44}$, the acetolysis of 4 -substi-

Fig. 1
Dependence of $\log \left(K / K_{\mathrm{H}}\right)$ of Substituted Acetic Acids in Water on $\log \left(K / K_{H}\right)$ of 4Substituted Quinuclidines I in 5% EthanolWater (v/v) at $25^{\circ} \mathrm{C}$

Fig. 2
Dependence of $\log \left(K / K_{\mathrm{H}}\right)$ of 4-Substituted Quinuclidines I on $\log \left(K / K_{\mathrm{H}}\right)$ of 4-Substituted Bicyclo[2,2,2]octanecarboxylic Acids in 50% Ethanol-Water (w/w) at $25^{\circ} \mathrm{C}$
tuted cyclohexyl tosylates ${ }^{45}$, the hydrolysis of 3 -methyl-1-bromoadamantanes ${ }^{46}$, and accelerates the $\mathrm{S}_{\mathrm{N}} 2$ reactions of 4 -substituted bicyclo[2,2,2]octylmethyl tosylates ${ }^{10}$ suggested that the polar effect of the methyl group depends on the hybridization of the carbon atom to which it is attached. On the basis of measurements the mentioned authors ${ }^{44-46}$ came to the conclusion that the methyl group bound to the $s p^{3}$ hybridized carbon atom is an electron acceptor in relation to hydrogen.* The same results, i.e. that the methyl group in the $\mathrm{CH}_{3}-\mathrm{Csp}^{3}$ grouping draws the electrons, were also obtained by Laurie and Muenter ${ }^{47}$ during the measurement of the Stark effect in the microwave region of methylacetylene, propane, and their deuterioanalogues. These views are in agreement with the finding of Brown ${ }^{48}$ that the bonds between the carbon atoms of different hybridization are polar.
The value $\sigma_{\mathrm{L}}^{\mathrm{CH}_{3}} 0.014$ calculated by us also differs from the value 0.03 given by Kwart and coworkers ${ }^{45}$. This small difference may be explained both from the differences of measurements (solvents and reaction type) and from the structural differences of the investigated compounds. Mislow ${ }^{49}$ found that the structural differences influence the hybridization of carbon atoms, which is then reflected in the bond polarization and, hence, also in the effect of the methyl group.

Deuterium as a substituent of the benzene nucleus is characterized as a weak electron donor in relation to hydrogen ${ }^{50,51}$. During the measurement of the dissociations constants of 4 -substituted quinuclidines I we found only negligible $\mathrm{p} K_{\mathrm{a}}$

Fig. 3
Dependence of $\log \left(K / K_{\mathrm{H}}\right)$ in 5% Ethanol--Water (v / v) on $\log \left(k / k_{\mathrm{H}}\right)$ in 100% Methanol of 4-Substituted Quinuclidines I at $25^{\circ} \mathrm{C}$

Fig. 4
Dependence of $\log \left(K / K_{\mathrm{H}}\right)$ in 5% Ethanol--Water (v / v) of 4-Substituted Quinuclidines I at $25^{\circ} \mathrm{C}$ on σ_{1}-Constants

* Similar conclusions on the polar effect of the methyl group in 4-methylquinuclidine were also drawn by Grob and coworkers (private communication, see Grob C. A., Simon W., Treffert D.: Angew. Chemie, in press).
differences between deuterated and non-deuterated derivatives (Table II). In order to have a better idea we give the measured differences $\Delta \mathrm{p} K_{\mathrm{a}}=p K_{\mathrm{a}}^{\mathrm{H}}-\mathrm{p} K_{\mathrm{a}}^{\mathrm{D}}$ for derivatives $I a-I b=0.02$ vol.(5% of ethanol in water), 0.07 (50 weight $\%$ ethanol-water), $I c-I d=0.03$ and 0.07 and for $I e-I f=0.01$ and 0.05 . For substances $I a$ and $I b$ the same value (Table II) was determined during the measurement of the rate of quaternization with methyl iodide. In order to check these measurements we carried out a 50% quaternization with methyl iodide (competitive reaction) of equimolar amounts of the non-deuterated and deuterated compound in the mixture. The ratio of these substances was determined mass spectrometrically from the intensities of molecular ionic species before and after the reaction. These measurements are in agreement with the results obtained in the determination of $\mathrm{p} K_{\mathrm{a}}$ and the reaction rates of quaternization with methyl iodide. From our measurements it follows that deuterium as a substituent displays a negligible polar effect. In contrast to the findings of Streitwieser and coworkers ${ }^{51}$ it behaves as a very weak electron acceptor in comparison with hydrogen. This fact indicates that analogous relations exist in electronic shifts caused by the $\mathrm{CH}_{3}-\mathrm{C} s p^{2}$ or $\mathrm{CH}_{3}-\mathrm{C} s p^{3}$, and $\mathrm{D}-\mathrm{C} s p^{2}$ or $\mathrm{D}-\mathrm{C} s p^{3}$.

The substantial difference in the values of σ_{1} constants for $\mathrm{CH}_{2} \mathrm{OH}$ group, i.e. the introduced value 0.05 and calculated from the equation, $0 \cdot 1$, shows that the primary value is to a certain extent inaccurate. It is known ${ }^{38,40}$ that between the hydroxy groups and the solvent a specific interaction takes place under formation of solvates; therefore the results should always be worked up with a certain precaution. Nevertheless we suppose that the effect of this group is better expressed by the value $\sigma_{\mathrm{I}}=0.07$ computed from the relation $\sigma_{\mathrm{I}}=\log \left(K / K_{\mathrm{H}}\right) / 3 \cdot 95$, where K and K_{H} mean ionisation constants of the substituted and unsubstituted acetic acid ${ }^{52,55}$. Though we are aware that regardless of the value we are using, i.e. 0.05 or 0.07 , it has no substantial effect on the accuracy of correlation.

Swain and Lupton ${ }^{53}$ returned to the idea of a practical differentiation of the "field effect F and the resonance effect R ", including the inductive effect in the "field effect". For the calculation of constants F they derived the following relationship

$$
F=(2.18 \pm 0.03) \sigma_{\mathrm{m}}-(0.58 \pm 0.02) \sigma_{\mathrm{p}}
$$

The constants F calculated from this equation were correlated with $\log \left(K / K_{\mathrm{H}}\right.$ of 4 -substituted quinuclidine I measured in 5% ethanol-water (v / v). The correlation is generally good (Table III), but there are appreciable deviations from the regression line for some substituents (chloromethyl, bromomethyl, carbamoyl, ethoxycarbonyl). The view seems correct ${ }^{54}$ that efforts to estimate the polar effect of the substituents using σ_{m} and σ_{p} constants simplify the given problem appreciably and probably will not be successful (see also the above discussion of the effect of carbon hybridization) in the series of saturated compounds. Nevertheless, this approach might be useful in the calculation of the σ constants for systems similar to benzene.

The high values of the reaction constants for ionisation reaction indicate a high sensitivity of the reaction center toward polar effects of the substituent. In Table IV a comparison with substituted acetic acids ${ }^{55}$, 4 -substituted bicyclo $[2,2,2]$ octanecarboxylic acids ${ }^{5}$, and 10 -substituted triptycene- 9 -carboxylic acids ${ }^{56}$ is presented. The measure of sensitivity was chosen according to Iiterature ${ }^{56} \Phi=\left(\varrho_{\mathrm{I}}\right.$ studied

Table III
Reaction Constants ϱ_{I}

Type of correlation	$\varrho_{\text {I }}$	l^{a}	r^{a}	s^{a}	n^{a}
$\log \left(K / K_{\mathrm{H}}\right)_{\mathrm{I}}$ on $\log \left(K / K_{\mathrm{H}}\right)$ of substituted acetic acids, (Fig. 1)	$1 \cdot 21$	$0 \cdot 17$	0.9834	0.187	11
$\log \left(K / K_{\mathrm{H}}\right)_{1}$ on $\log \left(K / K_{\mathrm{H}}\right)$ of 4 -substituted \rightarrow bicyclo[2,2,2]octanecarboxylic acids ${ }^{b}$, (Fig. 2)	3.07	$0 \cdot 20$	0.9889	$0 \cdot 183$	8
$\log \left(K / K_{\mathrm{H}}\right)_{1}$ on $\log \left(k / k_{\mathrm{H}}\right)_{\mathrm{I}}$, (Fig. 3)	-5.18 -5.30	0.17 0.17	0.9519 0.9690	0.306 0.248	$14^{\text {c }}$ $14^{\text {d }}$
$\log \left(K / K_{\mathrm{H}}\right)$ on σ_{I}, (Fig. 4)	5.11 5.09	$\begin{aligned} & 0.09 \\ & 0.13 \end{aligned}$	$\begin{aligned} & 0.9904 \\ & 0.9908 \end{aligned}$	0.133 0.133 0.150	$17^{\text {c }}$ $17^{\text {d }}$ 7^{e}
$\log \left(K / K_{\mathrm{H}}\right)_{\mathrm{I}}$ on F constants	4.41 3.08	-0.08 0.23	0.9894 0.9779	0.150 0.211	$7{ }^{\text {e }}$ 11
$\log \left(k / k_{\mathrm{H}}\right)_{\mathrm{I}}$ on σ_{I}	-0.91	-0.005	0.9626	0.049	14

${ }^{a} l$ is section on y axis, r is correlation coefficient, s is standard deviation, n is the number of the substituents studied; ${ }^{b}$ the values from literature ${ }^{5} ;{ }^{c}$ correlation of values in 5% ethanol-water (v/v); ${ }^{d}$ correlation of values in 50% ethanol-water (w/w); ${ }^{e}$ correlation of values in 80% Methyl Cellosolve-water (w/w).

Table IV
Comparison of Reaction Constants Ω_{1} and (Φ) for the Ionisation at $25^{\circ} \mathrm{C}$

Medium	Acetic acids a		I	Triptycene acids b	Octane carboxylic acids ${ }^{c}$		
Water	3.95	5.11^{d}	(1.29)		-		
50% ethanol (w/w)	4.18	5.09	(1.22)	1.10	(0.26)	1.65	(0.39)
80% Methyl Cellosolve	4.04	4.41	(1.09)	1.11	(0.27)		-

${ }^{a}$ Substituted acetic acids ${ }^{55} ;{ }^{b} 10$-substituted triptycene-9-carboxylic acids ${ }^{56} ;{ }^{c} 4$-substituted bicyclo $[2,2,2]$ octanecarboxylic acids ${ }^{5}$; ${ }^{d}$ measured in 5% ethanol-water (v/v).
system $) /\left(\varrho_{1}\right.$ acetic acids). From Table IV it is evident that 4-substituted quinuclidines I are more sensitive to the transfer of polar effects of substituents than are corresponding acetic acids. Another remarkable property of the reaction constants ϱ_{I} of the investigated substances during ionisation reactions is the insensitivity to the changes in the polarity of the medium, as is evident from Table IV comparable with substituted acetic acids. Bowden and coworkers ${ }^{55}$ ascribe this insensitivity of the reaction constants to the polarity of the medium to the transfer of the polar effects of the substituent through the hollow (i.e. to the direct electrostatic effect) without the participation of the solvent caused by the short distance $\sim 2.8 \AA$ of the dipolereaction center. Hoffmann and coworkers ${ }^{12}$ proved, on the contrary, by means of EHT calculation, that the direct electrostatic connection through space is of short range, negligible when the distances are close to $\sim 2.5 \AA$. The propagation of the substituent's polar effects through σ-bonds often has a longer range than expected ${ }^{13}$ in consequence of a suitable geometrical arrangement of these bonds. When studying diazabicycloalkanes with nitrogens at branching points the EHT calculations ${ }^{12}$ gave the following results (in agreement with experimental results): each of twocarbon bridges of 1,4-diazabicyclo[2,2,2]octane (XII) has its optimum orientation for the connection of free electron pairs in nitrogen along the bonds. Only when these bridges are substituted by one-carbon ones, i.e. in 1,3-diazabicyclo[1,1,1]pentane (XIII) a transfer predominantly through space takes place. Derivatives of quinuclidine I are isosteric with diazaoctane XII. Therefore we may suppose that the polarized $\mathrm{C}-\mathrm{X}$ bond of the same orientation as the electron pair will be connected with the

XII

XIII
free electron pair on the nitrogen atom in an analogous manner. From this idea the conclusion follows that the effect of the substituent on the reaction center is transmitted predominantly through σ-bonds, i.e., that the inductive effect predominates.

The presented data show clearly that 4 -substituted quinuclidines I are a sensitive model for the study of the transmission of the polar effects of substituents onto the reaction center. On the basis of high values of the reaction constants ϱ_{1} it may be justly supposed that this model will be suitable for a more precise determination of σ_{1}-constants, mainly in the case of alkyl groups bound to a $s p^{3}$ hybridized carbon.

For analyses we thank the workers of the elemental analyses department (head Dr L. Helešic) and for the measurement of the infrared and mass spectra Dr A. Kohoutová and Dr P. Zachur̆
of the Central Laboratories Institute of Chemical Technology. We are grateful to Dr L. Kábrt, of the Department of Analytical Chemistry of the same Institute for advice and help during the determination of the $p K_{a}$ values and to Miss M. Lutisanová for technical assistance.

REFERENCES

1. Hammett L. P.: Physical Organic Chemistry, Chap. 11, 12. McGraw-Hill, New York 1970.
2. Dewar M. J. S., Grisalde P. J.: J. Am. Chem. Soc. 84, 3539 (1962).
3. Murrell J. N., Kettle S. F. A., Tedder J. M.: Valence Theory, Chap. 16, p. 294. Wiley, London 1965.
4. Baker F. W., Parish R. C., Stock L. M.: J. Am. Chem. Soc. 89, 5677 (1967).
5. Holtz H. D., Stock L. M.: J. Am. Chem. Soc. 86, 5188 (1964).
6. Bowden K., Parkin D. C.: Can. J. Chem. 47, 177 (1969).
7. Hermann R. B.: J. Am. Chem. Soc. 91, 3152 (1969).
8. Exner O.: Tetrahedron Letters $1963,815$.
9. Exner O.: This Journal 31, 2016 (1966).
10. Holtz H. D., Stock L. M.: J. Am. Chem. Soc. 87, 2404 (1965).
11. Ehrenson S.: Progr. Phys. Org. Chem. 2, 195 (1964).
12. Hoffmann R., Imamura A., Hehre W. J.: J. Am. Chem. Soc. 90, 1499 (1968).
13. Kuthan J., Paleček J., Musil L.: This Journal, in press; Z. Chem. 8, 229 (1968).
14. Roberts J. D., Moreland W. T.: J. Am. Chem. Soc. 75, 2167 (1953).
15. Siegel S., Komarny J. M.: J. Am. Chem. Soc. 82, 2547 (1960).
16. Stetter H., Mayer J.: Chem. Ber. 9.5, 667 (1962).
17. Ritchie C. D., Lewis E. S.: J. Am. Chem. Soc. 84, 591 (1962).
18. Wilcox C. F. jr ,McIntyre J. S.: J. Org. Chem. 30, 777 (1965).
19. Paleček J., Hlavatý J.: Z. Chem. 9, 428 (1969).
20. Grob C. A., Renk E.: Helv. Chim. Acta 37, 1681 (1954).
21. Paleček J.: This Journal 31, 1340 (1966).
22. Fischer H. P., Grob C. A.: Helv. Chim. Acta 5I, 153 (1968).
23. Grob C. A., Brenneisen P.: Helv. Chim. Acta 41, 1184 (1968).
24. Grob C. A., Kostka K.: Helv. Chim. Acta 53, 613 (1970).
25. Grob C. A., Hoegerle R. M., Ohta M.: Helv. Chim. Acta 45, 1823 (1962).
26. Stetter H., Stark H.: Chem. Ber. 92, 733 (1959).
27. Dreifuss M. H., Ingold C. K.: J. Chem. Soc. 123, 2967 (1923).
28. Lukeš R., Štrouf O., Ferles M.: Chem. listy 50, 1624 (1956).
29. Prelog V., Kohlbach D., Cerkovnikov E., Režek A., Piantanida M.: Ann. 532, 69 (1937).
30. Prijs B., Lutz A. H., Erlenmayer H.: Helv. Chim. Acta 31, 571 (1948).
31. Grob C. A., Renk E.: Helv. Chim. Acta 37, 1672 (1954).
32. Lukes̆ R., Ferles M.: This Journal 18, 818 (1953).
33. Bunge W. in the book: Methoden der Organischen Chemie (Houben-Weyl) Vol. 1/2, p. 769, 793, 807, 831. Thieme, Stuttgart 1959.
34. Simon W., Kováts E., Chopard-dit-Jean L. H., Heilbronner E.: Helv. Chim. Acta 37, 1872 (1954).
35. Havel M., Krupička J., Svoboda M., Závada M., Sicher J.: This Journal 53, 1429 (1968).
36. Grob C. A., Kaiser A., Renk E.: Chem. Ind. (London) 1957, 598.
37. Brenneisen P., Grob C. A., Jackson R. A., Ohta M.: Helv. Chim. Acta 48, 146 (1965).
38. Jaffé H. H.: Chem. Rev. 53, 191 (1953).
39. Exner O.: Chem. listy 53, 1302 (1959).
40. Taft R. W. jr in the book: Steric Effects in Organic Chemistry (M.S. Newman, Ed.), Chap. 13. Wiley, New York 1956.
41. Preceeding on Hyperconjugation, Tetrahedron 5, 105 (1959).
42. Lucken E. A.: Tetrahedron 19, 123 (1963).
43. Heilbronner E.: Tetrahedron 19, 289 (1963).
44. Kwart H., Miller J. L.: J. Am. Chem. Soc. 83, 4552 (1961).
45. Kwart H., Takeshita T.: J. Am. Chem. Soc. 84, 1161 (1964).
46. Fort R. C., von Schleyer P. R.: J. Am. Chem. Soc. 86, 4194 (1964).
47. Laurie V. W., Muenter J. S.: J. Am. Chem. Soc. 88, 2883 (1966).
48. Brown T. L.: J. Am. Chem. Soc. 81, 3229 (1959).
49. Mislow K.: Tetrahedron Letters 1964, 1415.
50. Streitwieser A. jr, Klein H. S.: J. Am. Chem. Soc. 85, 2759 (1963).
51. Streitwieser A. jr, Humprey J. S. jr: J. Am. Chem. Soc. 89, 3767 (1967).
52. Charton M.: J. Org. Chem. 29, 1222 (1964).
53. Swain C. C., Lupton E. C. jr: J. Am. Chem. Soc. 90, 4328 (1968).
54. Exner O. in the book: Advances in Linear Free Energy Relationship (J. Shorter, N. B. Chapman, Eds). Plenum Press, London 1972.
55. Bowden K., Hardy M., Parkin D. C.: Can. J. Chem. 46, 2929 (1968).
56. Bowden K., Parkin D. C.: Can. J. Chem, 47, 177 (1969).

Translated by Ž. Procházka.

[^0]: * Part XI: Org. Mass Spectrom. 6, 1353 (1972).

[^1]: ${ }^{a}$ A 5% ethanol-water (v/v), B 50% ethanol-water (w/w), C 80% Methyl Cellosolve-water (w/w);
 ${ }^{b}$ lit. ${ }^{35}$ gives the value $10 \cdot 1$ in 98% methanol.

